Tuesday, November 27, 2012
Tuesday, October 2, 2012
install bamtools
bamtools can be used to calculate the statistics of alignment using BWA. i.e. the number of reads that mapped to the reference genome
#install cmake
wget http://www.cmake.org/files/v2.8/cmake-2.8.9.tar.gz
tar -zxvf cmake-2.8.9.tar.gz
cd cmake-2.8.9
./configure;make
sudo make install
#install zlib
wget http://zlib.net/zlib-1.2.7.tar.gz
tar -zxvf zlib-1.2.7.tar.gz
cd zlib-1.2.7
./configure;make
sudo make install
#install bamtools https://github.com/pezmaster31/bamtools/wiki/Building-and-installing
git clone git://github.com/pezmaster31/bamtools.git
cd bamtools; mkdir build; cd build
cmake ..; make
cd ../bin
./bamtools
Thursday, August 23, 2012
dbSNP137 for hg19
1. wget ftp://ftp.ncbi.nlm.nih.gov/snp/organisms/human_9606/VCF/00-All.vcf.gz 2. gunzip 00-All.vcf.gz 3. awk '/^#/ {print $0}' 00-All.vcf > head.txt 4. sed -i 's/chrMT/chrM/g' head.txt 5. awk '/^#/ {next}{print $0}' 00-All.vcf | sed 's/^/chr/' > 1.vcf 6. sed -i 's/chrMT/chrM/g' 1.vcf 7. cat head.txt 1.vcf > hg19.dbsnp.vcf 8. IGVTools/igvtools index hg19.dbsnp.vcf 9. awk '/^#/ {next}{print $1}' hg19.dbsnp.vcf | sort |uniq
Tuesday, June 5, 2012
fastq version
Reference: http://en.wikipedia.org/wiki/FASTQ_format Sanger format can encode a Phred quality score from 0 to 93 using ASCII 33 to 126 Illumina 1.3+ format can encode a Phred quality score from 0 to 62 using ASCII 64 to 126 So we can take few samples and see the range of scores. If any scores fall into the range of 33 ~ 63 then it would be CASAVA 1.3~1.7(Illumina format). Otherwise it would be CASAVA 1.8 (Sanger format, which is gaining popularity) For BWA, use "bwa aln -I" for Illumina format. For Sanger format, remove the "-I". For Novoalign, use "novoalign -F ILMFQ" for Illumina format. For Sanger format, use "novoalign -F STDFQ" or "novoalign -F ILM1.8".
Friday, May 25, 2012
Show all bases with IGV
Today someone asked me if I can make a revised version of snpview to support "Show all bases". Manual operations shows that it required to right-click the alignment and select "Show all bases" from popped menu. http://www.broadinstitute.org/igv/PortCommands The supported socket commands for IGV does not include this operation. (In fact it only supports a very few commands) Since IGV is open resource I decide to check out the source code to see if I can change the code then build a "Show all bases by default" IGV. 1. Find which source file is responsible for this option >grep -r -n "Show all bases" IGVDistribution_2.1.14/src/ src/org/broad/igv/sam/AlignmentTrack.java:1533: final JMenuItem item = new JCheckBoxMenuItem("Show all bases"); 2. OK let us check this file "src/org/broad/igv/sam/AlignmentTrack.java" vim +1533 src/org/broad/igv/sam/AlignmentTrack.java The context shows: ************************************************************* public void addShowAllBasesMenuItem() { // Change track height by attribute final JMenuItem item = new JCheckBoxMenuItem("Show all bases"); if (renderOptions.colorOption == ColorOption.BISULFITE || renderOptions.colorOption == ColorOption.NOMESEQ) { // item.setEnabled(false); } else { item.setSelected(renderOptions.showAllBases); } item.addActionListener(new ActionListener() { public void actionPerformed(ActionEvent aEvt) { renderOptions.showAllBases = item.isSelected(); refresh(); } }); add(item); } ************************************************************* It looks like "renderOptions.showAllBases" controls the switch on/off. 3. Check the "renderOptions.showAllBases" grep -r -n "renderOptions.showAllBases" IGVDistribution_2.1.14/src/ src/org/broad/igv/sam/AlignmentTrack.java:1538: item.setSelected(renderOptions.showAllBases); src/org/broad/igv/sam/AlignmentTrack.java:1542: renderOptions.showAllBases = item.isSelected(); src/org/broad/igv/sam/AlignmentRenderer.java:556: if (renderOptions.showMismatches || renderOptions.showAllBases) { src/org/broad/igv/sam/AlignmentRenderer.java:635: boolean showAllBases = renderOptions.showAllBases && Notice the last line defines a boolean variable "boolean showAllBases ..." Is this what I am looking for? 4. Further investigation vim +635 src/org/broad/igv/sam/AlignmentRenderer.java The context shows: ************************************************************* // Disable showAllBases in bisulfite mode boolean showAllBases = renderOptions.showAllBases && !(colorOption == ColorOption.BISULFITE || colorOption == ColorOption.NOMESEQ); ************************************************************* Now it is quite clear: "showAllBases" controls the on/off of "Show all bases". 5. Now let us make a dirty patch ************************************************************* // Disable showAllBases in bisulfite mode // boolean showAllBases = renderOptions.showAllBases && // !(colorOption == ColorOption.BISULFITE || colorOption == ColorOption.NOMESEQ); boolean showAllBases = true; ************************************************************* We just set "true" to it for always "on"! Like I said, it is dirty because it completely ignore all options there. It may have potential problem, but at now, let us make a test. 6. Go back to the source and build >ant We will got a new "igv.jar". rename it as "igv_showallbases.jar" to discriminate the original one. >mv igv.jar igv_showallbases.jar 7. Test! java -jar igv_showallbases.jar It works! Now by default all bases in alignment are showed. The user is happy because he got what he wants!
Tuesday, May 22, 2012
microRNA differential expression
Goal: Find the microRNAs that are differentially expressed (DE) between two groups. Each group consists of 6 ~ 7 biological samples which go through illumina HiSeq2000 sequencer. Single-end with 50bp length. Method: 1. download gene table for microRNA from miRbase >wget ftp://mirbase.org/pub/mirbase/CURRENT/genomes/hsa.gff3 2. convert it from GFF into BED format(and filter non-microRNA) >awk '/^#/{print;next;} $3 == "miRNA" {print "chr"$1"\t"$4"\t"$5"\t"$9}' hsa.gff3 > hsa.bed 3. Align reads to hg19 whole genome using novoalign >novoalign -r None -d hg19.nix -f A_1.fq.gz A_2.fq.gz | gzip > A.sam.gz >java -jar ~/picard/SortSam.jar INPUT=A.sam.gz OUTPUT=A.bam CREATE_INDEX=true SO=coordinate VERBOSITY=ERROR QUIET=true >mv A.bai A.bam.bai 4. Counting with bedtools >~/BEDTools-Version-2.16.2/bin/bedtools multicov -bams A.bam -bed hsa.bed | awk '$4 !~ 0 {print $0}' > A.txt (to be continued)
Wednesday, March 14, 2012
Aligner and Genotyper
Recently I ran into a problem:
By viewing the alignment BAM file in IGV, we can observe a significant SNP at a position. All reads that mapped to that regions shows this single mutation.
However, with GATK's UnifiedGenotyper, this SNP has a very low QUAL value (QUAL=7).
Not sure what caused this confusion, so at now I am trying to use two mapping applications novoalign and BWA as aligner, and two genotyper application UnifiedGenotyper and samtool/mpileup to call variances.
Ignore an error
I have a long problem when scripting the PBS script to cluster.
To stop a pipeline whenever any errors happened, we can trap it
#!/bin/bash
failclean()
{
echo 'catched!'
exit 1
}
trap 'failclean' ERR TERM
rm -fr *
touch b
echo 'hello,world' > 1.txt
Idonotexist
echo 'OK!'
We will get 'catched!' as output because the command 'Idonotexist' will be fail.
In the real case, the first step should be cleaning all existing file and folder to release all local disk space on each cluster node.
"rm -fr *"
However, this command may throw an error because the file permission
"rm: cannot remove abc.txt: Permission denied"
In fact, if we can not delete other files, it is fine. We just want to use as many disk space as possible.
However, with "trap" the above command will be caught by "trap" which in turn fail your whole script.
So, our questions is: how to ignore and supress any errors when using "rm -fr *".
The solution is:
"rm -fr * 2>/dev/null || true"
Now the final demo script looks like this:
#!/bin/bash
failclean()
{
echo 'catched!'
exit 1
}
trap 'failclean' ERR TERM
rm -fr * 2>dev/null || true
touch b
echo 'hello,world' > 1.txt
Idonotexist
echo 'OK!'
Tuesday, March 13, 2012
Failed: Install and use VAT
tar -zxvf libbios-1.0.0.tar.gz
cd libbios-1.0.0
./configure --prefix=/home/app/VAT/out/libbios-1.0.0;make;make install
tar -zxvf gsl-1.15.tar.gz
cd gsl-1.15
./configure --prefix=/home/app/VAT/out/gsl-1.15;;make;make install
#cd gd-libgd
#./configure --prefix=/home/app/VAT/out/libgd
#blatSuite34
unzip blatSuite.34.zip -d /home/app/VAT/out/blatSuite-34
tar -zxvf libs3-2.0.tar.gz
cd libs3-2.0
make DESTDIR=/home/app/VAT/out/libs3 install
export CPPFLAGS="-I/home/app/VAT/out/gsl-1.15/include -I/home/app/VAT/out/libbios-1.0.0/include -I/home/app/VAT/out/libs3/include -ggdb"
export LDFLAGS="-L/home/app/VAT/out/gsl-1.15/lib -L/home/app/VAT/out/libbios-1.0.0/lib -L/home/app/VAT/out/libs3/lib"
tar -zxvf vat-2.0.0.tar.gz
cd vat-2.0.0
#vim default.vatrc
#TABIX_DIR /home/app/tabix
#VAT_EXEC_DIR /home/app/VAT/out/vat/bin
./configure --prefix=/home/app/VAT/out/vat;make;make install
export VAT_CONFIG_FILE=/home/app/.vatrc
cd /home/app/test
gunzip gencode.v11.annotation.gtf.gz
awk '/\t(HAVANA|ENSEMBL)\tCDS\t/ {print}' gencode.v11.annotation.gtf | grep 'gene_type "protein_coding"' | grep 'transcript_type "protein_coding"' > gencode.v11.annotation.cds.gtpc.ttpc.gtf
/home/app/VAT/out/vat/bin/gencode2interval < gencode.v11.annotation.cds.gtpc.ttpc.gtf > gencode.v11.annotation.cds.gtpc.ttpc.interval
./faToTwoBit -noMask /tomato/data/hg19.fasta hg19.2bit
export LD_LIBRARY_PATH=/home/app/VAT/out/libbios-1.0.0/lib:/home/app/VAT/out/libs3/lib:/home/app/VAT/out/gsl-1.15/lib
/home/app/VAT/out/vat/bin/interval2sequences hg19.2bit gencode.v11.annotation.cds.gtpc.ttpc.interval exonic > gencode.v11.annotation.cds.gtpc.ttpc.exonic.fasta
#twoBitReadSeqFrag in chr6 start (53371710) >= end (53371710)
#Segmentation fault
/home/app/VAT/out/vat/bin/interval2sequences hg19.2bit gencode.v11.annotation.cds.gtpc.ttpc.interval genomic> gencode.v11.annotation.cds.gtpc.ttpc.genomic.fasta
#pass
/home/app/VAT/out/vat/bin/snpMapper gencode.v11.annotation.cds.gtpc.ttpc.interval gencode.v11.annotation.cds.gtpc.ttpc.genomic.fasta 1
#Segmentation fault
/home/app/VAT/out/vat/bin/indelMapper gencode.v11.annotation.cds.gtpc.ttpc.interval gencode.v11.annotation.cds.gtpc.ttpc.genomic.fasta 2
Thursday, March 1, 2012
R, DESeq and qvalue installation
wget http://cran.cnr.berkeley.edu/src/base/R-2/R-2.14.2.tar.gz
tar -zxvf R-2.14.2.tar.gz
cd R-2.14.2;./configure --prefix=/home/R-2.14.2;make;make install
cd /home/R-2.14.2/bin
wget http://genomics.princeton.edu/storeylab/qvalue/qvalue_1.1.tar.gz
./R CMD INSTALL qvalue_1.1.tar.gz
rm -f qvalue_1.1.tar.gz
source("http://www.bioconductor.org/biocLite.R")
biocLite("DESeq")
tar -zxvf R-2.14.2.tar.gz
cd R-2.14.2;./configure --prefix=/home/R-2.14.2;make;make install
cd /home/R-2.14.2/bin
wget http://genomics.princeton.edu/storeylab/qvalue/qvalue_1.1.tar.gz
./R CMD INSTALL qvalue_1.1.tar.gz
rm -f qvalue_1.1.tar.gz
source("http://www.bioconductor.org/biocLite.R")
biocLite("DESeq")
phastConsElements46way and avsift
wget ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/database/phastConsElements46way.txt.gz
gunzip phastConsElements46way.txt.gz
mv phastConsElements46way.txt hg19_phastConsElements46way.txt
mv hg19_phastConsElements46way.txt /tomato/data
/tomato/app/annovar/convert2annovar.pl x1.pass.vcf -format vcf4 > x1.annovar
/tomato/app/annovar/annotate_variation.pl -regionanno --buildver hg19 -dbtype mce46way x1.annovar /tomato/data/
/tomato/app/annovar/annotate_variation.pl -downdb -buildver hg19 avsift .
mv hg19_avsift.txt* /tomato/data
/tomato/app/annovar/convert2annovar.pl x1.pass.vcf -format vcf4 > x1.annovar
/tomato/app/annovar/annotate_variation.pl -filter -buildver hg19 -dbtype avsift x1.annovar /tomato/data/
gunzip phastConsElements46way.txt.gz
mv phastConsElements46way.txt hg19_phastConsElements46way.txt
mv hg19_phastConsElements46way.txt /tomato/data
/tomato/app/annovar/convert2annovar.pl x1.pass.vcf -format vcf4 > x1.annovar
/tomato/app/annovar/annotate_variation.pl -regionanno --buildver hg19 -dbtype mce46way x1.annovar /tomato/data/
/tomato/app/annovar/annotate_variation.pl -downdb -buildver hg19 avsift .
mv hg19_avsift.txt* /tomato/data
/tomato/app/annovar/convert2annovar.pl x1.pass.vcf -format vcf4 > x1.annovar
/tomato/app/annovar/annotate_variation.pl -filter -buildver hg19 -dbtype avsift x1.annovar /tomato/data/
Monday, February 27, 2012
Intersecting VCF
We can use vcftools (together with bgzip and tabix) to intersect VCF files. The first 4 columns for each VCF file(chr, position, ref and alt) can be easily overlapped. However it is undefined on how to "intersecting scores" in VCF files because it is not a simple arithmetic operation. To generate a VCF format compatible file, vcftools used the scores from the first VCF file only when intersecting multiple VCF files. This is simple but not a perfect solution.
Another possible solution is to merge the BAM firstly before calling variances. Therefore we will have only one VCF file after calling variances.
Is this perfect solution? Maybe. Merging alignment BAM files from different samples (individuals) is not well studied. We need a well known dataset to benchmark these two methods.
Another possible solution is to merge the BAM firstly before calling variances. Therefore we will have only one VCF file after calling variances.
Is this perfect solution? Maybe. Merging alignment BAM files from different samples (individuals) is not well studied. We need a well known dataset to benchmark these two methods.
Tuesday, February 21, 2012
MarkDuplicate is very necessary
Recently I did an analysis which basically comparing the positions of nucleosome in two samples to see if the pattern differs.
The target region is only 1500bp in length. HiSeq generated big raw read sequence files. After aligning to hg19, I can see many alignemnts are incorrect because they were mapped to other chromosomes and positions.
The first analysis without MarkDuplicate from Picard in BAM files result in huge peaks of depth of coverage which basically drowns any useful signals. After removing duplicates, the peaks were totally removed and I got strong signals.
Later I found another problem in GATK's DepthOfCoverage which reports 1000 as maximum depth of coverage. For example, even the actual depth of coverage on two positions are 5000 and 1020 respectively, GATK reports the same 1000.
As an alternative solution, samtools can report the actual depth of coverage without truncating.
samtools mpileup -ABr chr1:12345-123456 -d 1000000 x1.bam | awk '{print $4}' > x1.cov
samtools mpileup -ABr chr1:12345-123456 -d 1000000 x2.bam | awk '{print $4}' > x2.cov
Extracting the 4th column that has the depth of coverage.
The final step is plotting with R.
The target region is only 1500bp in length. HiSeq generated big raw read sequence files. After aligning to hg19, I can see many alignemnts are incorrect because they were mapped to other chromosomes and positions.
The first analysis without MarkDuplicate from Picard in BAM files result in huge peaks of depth of coverage which basically drowns any useful signals. After removing duplicates, the peaks were totally removed and I got strong signals.
Later I found another problem in GATK's DepthOfCoverage which reports 1000 as maximum depth of coverage. For example, even the actual depth of coverage on two positions are 5000 and 1020 respectively, GATK reports the same 1000.
As an alternative solution, samtools can report the actual depth of coverage without truncating.
samtools mpileup -ABr chr1:12345-123456 -d 1000000 x1.bam | awk '{print $4}' > x1.cov
samtools mpileup -ABr chr1:12345-123456 -d 1000000 x2.bam | awk '{print $4}' > x2.cov
Extracting the 4th column that has the depth of coverage.
The final step is plotting with R.
x1=as.numeric(unlist(read.table('x1.cov')))
x2=as.numeric(unlist(read.table('x2.cov')))
pdf(file="1.pdf")
op = par( mfrow = c( 3, 1 ))
barplot(x1)
title("X1")
barplot(x2)
title("X2")
op = par(op)
dev.off()
pdf(file="2.pdf")
plot(x1,type='l',col='green',xlab='chr1:12345-123456',ylab='Depth of Coverage')
lines(x2,type='l',col='red')
legend(10, 8000, c("X1", "X2"), col = c("green","red"), text.col = "green4", lty = c(3,4), pch = c(3,4), merge = TRUE, bg = 'gray90')
dev.off()
Remove any variances that were in CEU population
#use CEU as common variance database, not dbSNP
import sys
def filter_ceu(target_file,background_file='CEU.all.ids'):
x = []
for line in file(background_file):
x.append(line.strip())
mx = {}.fromkeys(x)
for line in file(target_file):
line = line.strip()
if line.startswith('#'):
pass
#print line
else:
toks = line.split('\t')
if not mx.has_key(toks[2]):
print line
else:
pass
if __name__=='__main__':
filter_ceu(sys.argv[1])
Tuesday, January 3, 2012
1000Genome Population
CHB Han Chinese Han Chinese in Beijing, China
CHS Southern Han Chinese Han Chinese South
CDX Dai Chinese Chinese Dai in Xishuangbanna, China
CHD Denver Chinese Chinese in Denver, Colorado (pilot 3 only)
JPT Japanese Japanese in Tokyo, Japan
KHV Kinh Vietnamese Kinh in Ho Chi Minh City, Vietnam
CEU CEPH Utah residents (CEPH) with Northern and Western European ancestry
TSI Tuscan Toscani in Italia
GBR British British in England and Scotland
FIN Finnish Finnish in Finland
IBS Spanish Iberian populations in Spain
YRI Yoruba Yoruba in Ibadan, Nigeria
LWK Luhya Luhya in Webuye, Kenya
GWD Gambian Gambian in Western Division, The Gambia
GHN Ghanaian Ghanaian in Navrongo, Ghana
MAB Malawian Malawian in Blantyre, Malawi
ASW African-American SW African Ancestry in Southwest US
AJM African-American MS African American in Jackson, Mississippi
ACB African-Caribbean African Caribbean in Barbados
MXL Mexican-American Mexican Ancestry in Los Angeles, California
CLM Colombian Colombian in Medellin, Colombia
PEL Peruvian Peruvian in Lima, Peru
PUR Puerto Rican Puerto Rican in Puerto Rico
CHS Southern Han Chinese Han Chinese South
CDX Dai Chinese Chinese Dai in Xishuangbanna, China
CHD Denver Chinese Chinese in Denver, Colorado (pilot 3 only)
JPT Japanese Japanese in Tokyo, Japan
KHV Kinh Vietnamese Kinh in Ho Chi Minh City, Vietnam
CEU CEPH Utah residents (CEPH) with Northern and Western European ancestry
TSI Tuscan Toscani in Italia
GBR British British in England and Scotland
FIN Finnish Finnish in Finland
IBS Spanish Iberian populations in Spain
YRI Yoruba Yoruba in Ibadan, Nigeria
LWK Luhya Luhya in Webuye, Kenya
GWD Gambian Gambian in Western Division, The Gambia
GHN Ghanaian Ghanaian in Navrongo, Ghana
MAB Malawian Malawian in Blantyre, Malawi
ASW African-American SW African Ancestry in Southwest US
AJM African-American MS African American in Jackson, Mississippi
ACB African-Caribbean African Caribbean in Barbados
MXL Mexican-American Mexican Ancestry in Los Angeles, California
CLM Colombian Colombian in Medellin, Colombia
PEL Peruvian Peruvian in Lima, Peru
PUR Puerto Rican Puerto Rican in Puerto Rico
Subscribe to:
Posts (Atom)